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Unary Algebras
{0, 1}-Valued Unary Algebras with Zero

Context

A finite unary algebra is an algebra that has only unary
term operations and a finite universe.

Unary algebras are studied extensively in universal
algebra:

Dualisability: Clark, Davey, Pitkethly (2003); Hyndman,
Willard (2000); ...
Bases of quasi-equations: Bestsennyi (1989); Hyndman,
Casperson (2009); ...
Lattices of subalgebras/congruences/topologies: Nation
(1974), Lampe (1974), Bordalo (1989), Kartashova
(2011), ...
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Unary Algebras
{0, 1}-Valued Unary Algebras with Zero

Advantages of Finite Unary Algebras

A unary algebra can be
represented in terms of
its Rows.

P f1 f2 f3
0 2 1 2
1 1 2 2
2 2 2 2

Rows(P) = {〈2, 1〉,
〈1, 2〉,
〈2, 2〉}
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{0, 1}-Valued Unary Algebras with Zero

Advantages of Finite Unary Algebras

A unary algebra can be
represented in terms of
its Rows.

P f1 f2 f3
0 2 1 2
1 1 2 2
2 2 2 2

Rows(P) = {〈2, 1〉,
〈1, 2〉,
〈2, 2〉}

Unary algebras are
easily visualised.
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Unary Algebras
{0, 1}-Valued Unary Algebras with Zero

Narrowing It Down

The class of all unary algebras is quite broad.

Can narrow it down in two ways:

Restrict the size of the universe: Clark, Davey, and
Pitkethly (2003) fully classified the dualisability of
three-element unary algebras. Pitkethly (2002) extended
this classification to include full and strong dualisability.
Impose restrictions on the term operations of the
algebra: Casperson, Hyndman, Mason, Nation, and
Schaan (submitted) used this approach in the context of
finite bases of quasi-equations.
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Unary Algebras
{0, 1}-Valued Unary Algebras with Zero

Casperson et al. (submitted) looked at {0, 1}-valued unary
algebras with zero:

Constant function 0 that is a one-element subalgebra

Range of all basic operations is included in {0, 1}

M f1 f2 f3
0 0 0 0
1 0 0 0
2 0 1 0
3 1 0 0
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Unary Algebras
{0, 1}-Valued Unary Algebras with Zero

Theorem (Casperson et al. submitted)

If M is a 4-element {0, 1}-valued unary algbera with 0, then
one of the following holds:

1 the ≤ on {0, 1} can be pp-defined via a formula of the
form ∃w x ≈ f (w) & y ≈ g(w);

2 the graph of addition modulo 2 on {0, 1} can be
pp-defined via a formula of the form
∃w x ≈ p(w) & y ≈ q(w) & z ≈ r(w);

3 the rows of M form an order ideal under 0 ≤ 1.
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When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

A Place to Start

I was introduced to natural duality theory with the following
question:

Question

If the rows of a {0, 1}-valued unary algebra with 0 form an order
ideal under 0 ≤ 1, under what circumstances is the algebra
dualisable?
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When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

Part of this question is easily answerable using this result:

Theorem (Clark, Davey, Pitkethly 2002)

Let P be a finite algebra which has binary homomor-
phisms ∧ and ∨ such that 〈P ;∧,∨〉 is a lattice. Then

˜P := 〈P ;∨,∧,R2|M|; τ〉 yields a duality on ISP(P).

It is straightforward to show that when the rows of an algebra
form a lattice order, the conditions of this theorem are
satisfied.
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When Rows(M) is not a Lattice Order?

By further narrowing the scope down to {0, 1}-valued algebras
with 0 with unique rows, a pattern started to develop using a
refinement of the Ghost Element Method found in Clark,
Davey, and Pitkethly (2003) which states that the presence of
a “ghostly element” is necessary for dualisability.
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When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

PP-Formulae

∃w f1(w) ≈ 0 & f2(w) ≈ f4(w) & x ≈ f3(w) & y ≈ f4(w)

M f1 f2 f3 f4 f0
0 0 0 0 0 0
1 1 0 1 0 0
2 0 1 0 1 0
3 0 0 1 0 0
4 0 0 1 1 0
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PP-Formulae

∃w f1(w) ≈ 0 & f2(w) ≈ f4(w) & x ≈ f3(w) & y ≈ f4(w)

M f1 f2 f3 f4 f0
0 0 0 0 0 0
1 1 0 1 0 0
2 0 1 0 1 0
3 0 0 1 0 0
4 0 0 1 1 0

This pp-formula pp-defines the relation
R = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} on M.
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V-Ghostable Algebras

Definition

Suppose there exist Z ⊆ FM, distinct t and u ∈ FM \ Z , and
a collection {Ei} of subsets of FM such that we can pp-define
the relation R = {(0, 0), (0, 1), (1, 0)} via

Φ : ∃w [&
z∈Z

z(w) ≈ 0]

&

[
&

E∈{Ei}
[ &
d ,e∈E

d(w) ≈ e(w)]

]
&[x ≈ t(w)]&[y ≈ u(w)]

such that if w1 and w2 witness the same element of R , then
w1 = w2. Then M is a v-ghostable algebra.
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When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

Example

∃w [&
z∈Z

z(w) ≈ 0]&

[
&

E∈{Ei}
[ &
d ,e∈E

d(w) ≈ e(w)]

]
&[x ≈ t(w)]&[y ≈ u(w)]

M f1 f2 f3 f4 f0
0 0 0 0 0 0
1 1 0 1 0 0
2 0 1 0 1 0
3 0 0 1 0 0
4 0 0 1 1 0

∃w f1(w) ≈ 0 & f2(w) ≈ f4(w) & x ≈ f3(w) & y ≈ f4(w)
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When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

Theorem 1: V-Ghosting Theorem

V-ghostable algebras are not dualisable.

Idea of Proof

Having a v-ghosting formula provides a uniform way to apply
the refined Ghost Element Method.
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When Rows Forms an Order Ideal
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Revisiting Order Ideals

With some work it can be shown that if Rows(M) form an
order ideal which is not a lattice order, then M is v-ghostable.
This gives our second result:

Theorem 2

Let M be a {0, 1}-valued unary algebra with 0 with unique
rows. If Rows(M) forms an order ideal under 0 ≤ 1, then M
is dualisable if and only if Rows(M) forms a lattice order.
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A More General Result
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It may not be immediately obvious whether or not an algebra
is a v-ghostable algebra.

M0 f1 f2 f3
0 0 0 0
1 0 1 0
2 1 0 0

∃w x ≈ f1(w) & y ≈ f2(w)

M f1 f2 f3 f4 f0
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 1 0 0
3 1 1 0 0 0
4 1 1 0 1 0
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Two Term Reducts

Definition

By a two term reduct of an algebra M = 〈M ;FM〉 we mean
an algebra N = 〈M ;FN〉 where FN consists of exactly two of
the functions from FM.

M f1 f2 f3 f4 f0
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 1 0 0
3 1 1 0 0 0
4 1 1 0 1 0
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V-Order Reductable

Definition

If M has a two term reduct N such that Rows(N) =
{〈0, 0〉, 〈0, 1〉, 〈1, 0〉} such that the row 〈0, 0〉 is uniquely wit-
nessed (in N), then we say that M is v-order reductable.

M f1 f2 f3 f4 f0
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 1 0 0
3 1 1 0 0 0
4 1 1 0 1 0

N f2 f3 f0
0 0 0 0
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When Rows Forms an Order Ideal
A More General Result
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V-Order Reductable Theorem

Every v-order reductable algebra is v-ghostable.

Corollary

Every v-order reductable algebra is not dualisable.

Idea of Proof

We use a double induction on the number of occurrences of
the rows 〈0, 1〉 and 〈1, 0〉 in the reduct to build up v-ghosting
formulae.

Brian Schaan and Jennifer Hyndman Dualisability of a Class of Unary Algebras



Background
Our Results
What Next?

When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

V-Order Reductable Theorem

Every v-order reductable algebra is v-ghostable.

Corollary

Every v-order reductable algebra is not dualisable.

Idea of Proof

We use a double induction on the number of occurrences of
the rows 〈0, 1〉 and 〈1, 0〉 in the reduct to build up v-ghosting
formulae.

Brian Schaan and Jennifer Hyndman Dualisability of a Class of Unary Algebras



Background
Our Results
What Next?

When Rows Forms an Order Ideal
A More General Result
A Test for Non-Dualisability

V-Order Reductable Theorem

Every v-order reductable algebra is v-ghostable.

Corollary

Every v-order reductable algebra is not dualisable.

Idea of Proof

We use a double induction on the number of occurrences of
the rows 〈0, 1〉 and 〈1, 0〉 in the reduct to build up v-ghosting
formulae.

Brian Schaan and Jennifer Hyndman Dualisability of a Class of Unary Algebras



Background
Our Results
What Next?

Remaining Algebras
Repeated Rows

What Next?

There are {0, 1}-valued unary algebras with 0 with unique
rows to which these results do not apply.

M1 f1 f2 f3 f0
0 0 0 0 0
1 0 1 1 0
2 1 0 1 0
3 1 1 0 0

M2 f1 f2 f3 f0
0 0 0 0 0
1 0 0 1 0
2 0 1 1 0
3 1 0 1 0

Neither is dualisable. Ross Willard assisted us with proving
this for M1. The proof for M2 utilizes Pitkethly’s (2010) result
that if a finite unary algebra is dualisable, it is dualisable via a
finite set of relations.
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Repeated Rows

All of our results only apply when the rows of M are not
repeated. The results do not appear to generalize intuitively.

M3 f1 f2 f0
0 0 0 0
1 0 1 0
2 1 0 0

Not Dualisable

M4 f1 f2 f0
0 0 0 0
1 0 0 0
2 0 1 0
3 1 0 0

Dualisable
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